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a b s t r a c t

We compare the asymptotic dynamics of two competitive populations described by a sys-

tem of two differential equations under different density stresses in order to clarify whether

some parameters of the system or a function of them can be interpreted as a fitness criteria

which a population should optimise to win the competition. Four types of stress are consid-

ered. First, it is an age-independent thinning of individuals that prevents that the common

density of two competing populations would be greater than some limit value K. The second

type of stress is a thinning of youngs and the third one is a thinning of adults. These three

stresses come into play just when the limit is reached. The forth stress, like the first one,

does not depend on age but, unlike it, begins to take action gradually and increases gradu-

ally as density approaches K. We show that in the first case the population with a greater

Malthusian coefficient r will ultimately supplant the other one. In contrast, in the second

and third cases, the greater value of r does not ensure winning but instead that population

whose lifetime reproductive success, R0, is higher will supplant the other. And, at last, in

the fourth case neither greater r nor R0 guarantee the win. Instead, that population whose

environmental carrying capacity is greater than the capacity of the other population will

supplant the other one.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The question we try to answer here can be formulated as
follows. Let there be two competing populations X and Y
composed of individuals with phenotypes px and py, corre-
spondingly. Does there exist a phenotype-dependent function
or a functional, called fitness criterion, such that the inequality
F(py) > F(px) implies that the population Y will inevitably sup-
plant the population X? If so, F may be interpreted as a criterion
of evolutionary selection. We will see that, indeed, in some
model situations such criteria exist but they can be different
for different models. The key role is played by the mechanism
of braking or limiting the growth of population density. We
consider several types of density-dependent environmental
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stress: age-independent thinning, thinning of youngs, thin-
ning of adults, and a model of a steadily increased density
stress.

It is convenient, though not necessary, to imagine X as
a large resident population and Y as a small population of
invaders. The question then is what performances of the
invaders can ensure that they supplant the residents.

Or, alternatively, we may consider X as a large initial pop-
ulation and Y as a small population of mutants. If a fitness
criterion exists and its value is greater for Y than for X then
Y will supplant X and become resident. But another mutant Z
may appear with still greater fitness and then Z will supplant
Y, and so on. So, with such successive replacements of geno-
types, the fitness criterion will grow tending to its maximum.

0304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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This is what is called evolutionary optimization (e.g. Teriokhin
and Budilova, 2001; Teriokhin et al., 2003).

Among the firsts, Mylius and Diekmann (1995) drew atten-
tion to the importance of taking into account the nature of
density stress when considering. They analyzed the situa-
tions of different density stresses using the Maynard Smith
approach based on the game theory and the notion of evo-
lutionary stable strategy (Maynard Smith, 1982). Here we use
a more straightforward and, as we believe, intuitively more
perceptible approach, based on the study of the population
asymptotic dynamics in different two-populations competi-
tion models.

2. Models of stopped exponential growth

The model of simple exponential growth is based on the
assumption that the rate of growth of population density is
proportional to the density (we assume that the common eco-
tope of two competitive population is fixed so that equations
for density and size are equivalent):

⎧⎨
⎩

dx

dt
= rxxt

dy

dt
= ryyt

(1)

where xt and yt are the densities of X and Y at time t, and rx and
ry are the so-called intrinsic rates of population growth which
can be expressed as differences rx = bx − dx and ry = by − dy, of
birth rates bx and by and death rates dx and dy (e.g. May,
2001). Evidently, the model of unlimited exponential growth
(1) is unrealistic for very big xt and yt because of limited envi-
ronmental resources. Hence it should be modified to take
into account such limitations. This can be made in several
ways.

Assume that the nature of the environment is such that
the sum of densities of X and Y cannot exceed some con-
stant K, the carrying capacity of the environment. We will
suppose that while the condition xt + yt < K is true, the den-
sities xt and yt grow exponentially in accordance with Eq.
(1). But just at the moment when the environment is satu-
rated, i.e. the equality xt + yt = K is attained, some mechanism
comes into force which does not allow for the total density
to exceed K. At this moment the populations X and Y begin
to compete because the limitation is imposed on their sum
so that an increase of one population prevents automatically
an increase of another one. Our purpose consists in compar-
ing the dynamics of two populations as dependent on the
parameters rx and ry representing their phenotypes. Espe-
cially, we are interested in finding conditions under which Y
will supplant X. The mechanism of limiting the sum of densi-
ties of X and Y can be realized at least by three ways. First, it
is possible to reduce in the same proportion both the den-
sity of youngs and the density of adults. Second, only the
density of youngs can be reduced. And third, the required
limitation can be ensured by reducing only the density of
adults.

2.1. Age-independent thinning

Rewrite system (1) as follows

{
xt+dt = xt + rxxt dt

yt+dt = yt + ryyt dt
(2)

and represent the mechanism of proportional reducing the
density of youngs and adults as multiplying the right-hand
sides of both equations of the system by some coefficient ˛

(intuitively this process can be imagined as thinning the total
population by a factor of 1/˛ applied with the same intensity
to the youngs and to the adults of the both populations X and
Y):

{
xt+dt = ˛(xt + rxxt dt)

yt+dt = ˛(yt + ryyt dt)
(3)

The condition that the equality xt + yt = K attained at the
moment t cannot be upset at the following moment t + dt
implies that the following equality:

xt+dt + yt+dt = xt + yt (4)

should be true as soon as the limit K is attained. Replacing xt+dt

and yt+dt in (4) with their expressions from (3) we obtain the
following equation for calculating ˛:

˛(xt + rxxt dt + yt + ryyt dt) = xt + yt

from which we get:

˛ = xt + yt

xt + rxxt dt + yt + ryyt dt
(5)

Substituting (5) into (3) and subtracting xt and yt from the both
sides of the first and second equations in (3), we obtain:⎧⎪⎨
⎪⎩

xt+dt = (xt + yt)(xt + rxxt dt)
xt + rxxtdt + yt + ryyt dt

− xt

yt+dt = (xt + yt)(yt + ryyt dt)
xt + rxxtdt + yt + ryyt dt

− yt

from where we obtain under the condition dt → 0 the following
system of differential equations:

⎧⎪⎨
⎪⎩

dx

dt
= (rx − ry)

xtyt

xt + yt

dy

dt
= (ry − rx)

xtyt

xt + yt

(6)

The above system describes the dynamics of densities of X
and Y under their age-independent sum-preserving thinning.
We see immediately from (6) that when ry > rx, i.e. ry − rx, > 0
(and, correspondingly, rx − ry, < 0) the density of Y permanently
increases whereas the density of X permanently decreases.
This implies that Y will ultimately supplant X. So, a popula-
tion with greater intrinsic rates of growth, r, have advantage
over that with lesser r and ultimately supplants it. This means
that r plays the role of fitness criterion when the competi-
tion between the resident and mutants is described by system
(6). Fig. 1 illustrates this situation for rx = 0.01 and ry = 0.02. We
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Fig. 1 – The dynamics of densities of populations X and Y
in the case of age-independent thinning for rx = 0.01,
ry = 0.02, x0 = 20, y0 = 1 and K = 100 (X and Y are marked as
resident and invader, correspondingly).

see that asymptotically the number of X approaches to zero
whereas the number of Y tends to the initial common density.

2.2. Thinning the youngs

Rewrite now system (1) in another way:

{
xt+dt = xt + bxxt dt − dxxt dt

yt+dt = yt + byyt dt − dyyt dt
(7)

and represent the mechanism of proportional reducing the
density of youngs as multiplying the second terms of right-
hand sides of both Eq. (7) by some coefficient ˇ (intuitively this
process can be imagined as thinning the youngs by a factor of
1/ˇ):{

xt+dt = xt + ˇbxxt dt − dxxt dt

yt+dt = yt + ˇbyyt dt − dyyt dt

After transformations similar to those made in Section 2.1
we obtain the following system:

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
=

(
bx

dx
− by

dy

)
dxdyxtyt

bxxt + byyt

dy

dt
=

(
by

dy
− bx

dx

)
dxdyxtyt

bxxt + byyt

(8)

This system describes the dynamics of densities of X and Y
under sum-preserving thinning of youngs. We see from (8)
that when by/dy > bx/dx, i.e. by/dy − bx/dx > 0 (and, correspond-
ingly, bx/dx − by/dy < 0) the density of Y permanently increases
whereas the density of X permanently decreases so that Y will
ultimately supplant X.

So, populations with greater ratios R0 = b/d have advantage
over those with smaller R0 that implies that in this model R0

plays the role of fitness criterion. This result contrasts with
the situation considered in the previous paragraph where the
fitness criterion was not the ratio R0 = b/d of birth rate to death
rate but their difference r = b − d.

The parameter R0 can be interpreted as lifetime reproduc-
tive success of an individual because it can be viewed as a
product of the birth rate b by the inverse of death rate 1/d
which, in its turn, is equal to the expected lifespan, L. Though
the both criterions, r and R0, increase with increasing b and
decreasing d their maximum values as functions of b and d
are attained at different values of these arguments. Hence
we may expect that, for some combinations of b and d, an
invader Y capable to supplant the resident X in the case of
age-independent thinning will be ousted by the resident in
the case of thinning the youngs, and vise versa.

A typical situation when an invader is more advanta-
geous from the point of view of the criterion r as compared
with R0, arises when great values of r are due to great val-
ues of birth rates. For example, if by = 0.10, dy = 0.03, bx = 0.05
and dx = 0.01 then ry − rx = (0.10 − 0.03) − (0.05 − 0.01) = 0.03 but
R0y − R0x = (0.10/0.03) − (0.05/0.01) = −1.67. This means that, in
the case of an age-independent thinning, Y will inevitably sup-
plant X because ry > rx but if the density press acts only on
the youngs then, on the contrary, Y will be supplanted by X
because R0y < R0x. That is an invader with a high birth rate
but in the same time with a relatively high mortality will win
under age-independent thinning and will lose under youngs-
aimed thinning. We will see in the next paragraph that such
an invader will lose in the case of adults-aimed thinning too.

2.3. Thinning the adults

The thinning of adults can be considered as increasing their
death rate in the same proportion both for residents and
mutants. To embed this mechanism into the system (7) we will
modify it by increasing the death rates in the both equations
a factor of ı{

xt+dt = xt + bxxt dt − ıdxxt dt

yt+dt = yt + byyt dt − ıdyyt dt

After transformations similar to those made in Section 2.1
we obtain:

⎧⎪⎪⎨
⎪⎪⎩

dx

dt
=

(
bx

dx
− by

dy

)
dxdyxtyt

dxxt + dyyt

dy

dt
=

(
by

dy
− bx

dx

)
dxdyxtyt

dxxt + dyyt

(9)

This system describes the dynamics of densities of X and
Y under sum-preserving thinning of adults. Though sys-
tem (9) slightly differs from (8), we can see that it leads
to the same conclusions as (8). Namely, when by/dy > bx/dx,
i.e. by/dy − bx/dx > 0 (and, correspondingly, bx/dx − by/dy < 0) the
density of Y permanently increases whereas the density of X
permanently decreases so that ultimately Y will supplant X.
Thus in the situation of thinning adults just as in the pre-
viously considered situation of thinning youngs the fitness
criterion is the same, R0.

3. Logistic limitation

In the models of stopped exponential growth we consid-
ered rather rigid ways of preserving the summary population
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density after having attained the carrying capacity K. The well-
known model of two-population competition (Lotka, 1925;
Volterra, 1926; May, 2001) assume a more soft mechanism of
stabilizing the summary population density near the carrying
capacity K. It looks as follows

⎧⎪⎨
⎪⎩

dx

dt
= rxxt

(
1 − xt + yt

K

)
dy

dt
= ryyt

(
1 − xt + yt

K

) (10)

We may call it model of logistic growth because system
(10) is a straightforward generalization of well-known model
of logistic growth of one population for the case of two
populations.

What happens if ry > rx? Will Y supplant X as it was the
case in the situation of age-dependent thinning? As we see
from Fig. 2 illustrating the dynamics of densities of X and Y,
obtained by integrating (10) for rx = 0.01, ry = 0.02, it is not so.
In contrast to Fig. 1, Y does not supplant X though ry > rx (note,
however, that nor Y supplants X).

Thus we may conclude that in the case of logistic model
described by system (10) the value of r does not change cru-
cially the fitness of population. But this model has one more
phenotypic parameter, the carrying capacity K. If we suppose
that this parameter differs for X and Y then we will obtain the
following model:

⎧⎪⎨
⎪⎩

dx

dt
= rxxt

(
1 − xt + yt

Kx

)
dy

dt
= ryxt

(
1 − xt + yt

Ky

) (11)

An example of dynamics of X and Y, obtained by integrating
(11) for Ky = 200 and Kx = 100 for equal intrinsic rates of growth
rx = ry = 0.01, is given in Fig. 3. We see that now Y supplants X.
The reason is that X, having lesser environment capacity, is
more sensible to density stress: as soon as the limit Kx is sur-
passed the rate of growth of X (determined by the right-hand
side of the first equation in (11)) becomes negative whereas
the rate of growth of Y remains positive.

Fig. 2 – The dynamics of densities of populations X and Y
in the case described by system (10) for rx = 0.01, ry = 0.02,
x0 = 20, y0 = 1 and K = 100 (X and Y are marked as resident
and invader, correspondingly).

Fig. 3 – The dynamics of populations X and Y in the case
described by (11) for rx = ry = 0.01, x0 = 20, y0 = 1, Kx = 100 и
Ky = 200 (X and Y are marked as resident and invader,
correspondingly).

So we conclude that in the case of logistic environmental
press the role of fitness criterion is played by K.

4. Conclusion

Thus we showed that any population formed of invaders or
mutants, even very small, that surpasses the resident popu-
lation in r in the case of age-independent thinning, in R0 in
the cases of thinning of only youngs or of only adults, and in
K in the case of age-independent steadily increased density
press, will ultimately supplant the resident population. Par-
ticularly, in the case of recurring mutations this implies that,
depending on the type of environmental density stress, suc-
cessful mutants will have correspondingly higher values of r,
R0 or K. So, these characteristics may be considered as criteria
of evolutionary fitness for corresponding environmental sit-
uations. We may also figuratively say that, depending on the
type of environmental density stress, r-, R0- or K-strategy of
evolutionary selection should be realized.
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