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Summary

The aim of this study was to clarify the relationships between environmental conditions and physiological

constraints that persist during the evolution of a species on the one hand, and the strategies of energy
investment used by an individual to repair on the other. We take as a basis for our study the evolutionary
optimization approach and use as a criterion of optimality the individual's lifetime reproductive success.

Using methods of mathematical theory of optimal control, we calculated some optimal strategies of energy
partition between repair, current survival and reproduction for various levels of uncontrollable (external)
mortality. The results are presented in the form of dependencies of mortality on age and dependencies of
optimal energy partitioning on age and accumulated mortality risk. Three cases of energy partitioning were

considered: that between reproduction and current survival, that between reproduction and repair, and that
between current survival and repair. In the case of the trade-o� between reproduction and current survival, we
noted opposite in¯uences of the levels of increase of uncontrollable and controllable sources of mortality on

the strategy of energy partitioning, and the crucial role of the ®niteness of maximum lifespan when age-
independent sources of mortality only were present. In the case of the trade-o� between reproduction and
repair, we noted that controllable repair leads to the emergence of accelerated growth of mortality with age,

which may be considered one possible cause of the accelerated ageing often observed in nature and expressed
sometimes in the form of a Gompertz-Makeham equation. In the case of the trade-o� between current
survival and repair, we found that, in the case of increasing mortality, repair is sacri®ced not only in favour of
reproduction, but also in favour of current survival, so that accelerated ageing should be expected even when

investment in reproduction does not increase with age. In general, we conclude that when mortality increases,
the priority when expending energy is shifted primarily in favour of reproduction, then in favour of current
survival, with repair having the lowest priority.
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Introduction

Preferential energy allocation of limited organismal resources to reproduction at the expense of
individual survival seems to be the main cause of senescence, at least for higher animals (Medavar,
1952; Williams, 1957). In its most explicit form, this idea was expressed by Kirkwood (1981) as a
need to divide energy and other resources of an individual between reproduction and repair in such
a way as to optimize Darwinian ®tness.
Within the framework of this general approach, some more speci®c questions arise which

concern relationships between environmental conditions and physiological constraints in the
course of species evolution on the one hand, and the optimal strategies of energy investment for
repair on the other. Many of these questions were outlined by Kirkwood (1981). Here we try to
answer some of them using a particular mathematical model which explicitly counterbalances the
organism's investment in repair (i.e. future survival) with its investment in current survival (e.g.
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safeguarding against hazards) and reproduction. We formulate the problem in terms of mathe-
matical theory of optimal control and use two of the most concise and widespread forms of this
theory: Pontryagin's maximum principle (Pontryagin et al., 1962) and Bellman's dynamic pro-
gramming (Bellman, 1957).
The maximum principle method allows one to explore the problem analytically but only in

relatively simple cases. In more complex situations, numerical methods are necessary. Dynamic
programming is a numerical procedure which does not allow an analytical solution but, compared
with the maximum principle, does allow complex optimization problems to be formulated and
solved (Mangel and Clark, 1988). Correspondingly, we use the maximum principle when the
problem is simple, but use dynamic programming when it is more complex.
In some respects, the problems we pose and the methods we use are similar to those in Abrams

and Ludwig (1995). The main di�erence in our approach is that it uses a more straightforward
model of resource allocation and more explicit partition of causes of mortality into several con-
ceptually di�erent components. We believe this enables a better understanding of the peculiarities
of an age schedule of repair. In addition, models of the type we use here match well the neural
network approach to modelling the physiological processes of energy allocation in organisms
(Mangel, 1990; Budilova et al., 1995).

The model

We assume that in the evolution of a species, some criterion of ®tness is maximized. For simplicity,
take the lifetime reproductive success R0 of the organism, de®ned by the integral:

R0 �
ZT

0

u�t�l�t� dt �1�

where u�t� is the fraction of energy allocated to reproduction, l�t� is the survival function (i.e. the
probability of survival to age t) and T is the maximum lifespan.
We agree that the Malthusian parameter, r, obtained by solving the Euler-Lotka equation

1 �
ZT

0

eÿrtu�t�l�t� dt

could be a better measure of ®tness, but believe that the complications introduced when using r
instead of R0 are not warranted here. It is known (Taylor et al., 1974) that optimal r can be found
by maximizing the right-hand side of the Euler-Lotka equation, keeping it equal to 1. Comparing
the right-hand sides of Equation (1) and of the Euler-Lotka equation, we conclude that optimizing
R0 is equivalent to optimizing r when r � 0 (i.e. if the population size is stable). If r 6� 0, then
optimizing r is equivalent to optimizing R0 in the presence of an additional constant external
mortality r, because the multiplier eÿrt may be formally considered part of survival. Acknowl-
edging that we will usually consider a range of external mortalities, we believe that no essentially
new feature would be introduced by changing R0 for r as a criterion of optimality.
Another implicit simpli®cation consists in equating the birth rate to the fraction of energy u�t�

allocated to reproduction in Equation (1). This means that we assume the rate of energy pro-
duction to be constant (and equal to 1) independently of the individual's age. The maximum life
span T is assumed to be ®nite. This is necessary for the maximum principle and dynamic pro-
gramming methods of optimization to be applicable. In the case of semelparous species such an
assumption is natural, whereas for iteroparous species it is somewhat arti®cial. We overcome this
limitation, if necessary, simply by setting T to be very large.

292 Teriokhin



Survival l�t� is de®ned by the di�erential equation:

dl
dt
� ÿl�t�l�t� l�0� � 1 �2�

where l�t� is the mortality assumed to be composed of four components,

l�t� � a� bt � p�t� � q�t�
the ®rst two of which are uncontrollable and the other two controllable by the individual. The ®rst
component, a, is the constant part of uncontrollable mortality (sometimes called Ôexternal') and the
second component, bt, is the part of mortality which increases uncontrollably with age at rate b
(Ôuncontrollable senescence'). In contrast to the ®rst two components, the second and third com-
ponents of l�t� are assumed to be controllable by the individual, but in di�erent ways. First, the
individual can control its current level of mortality by allocating a fraction of energy v�t� for this
purpose, which we refer to as the fraction of energy allocated to current survival. Namely, we
assume that the third component of mortality has the form:

p�t� � c
v�t�

where c is a non-negative constant. Secondly, the individual can control the rate of senescence ±
that is, the rate of irreversible increasing (Ôaccumulating') mortality with age ± by allocating a
fraction of energy w�t� for this purpose, which we refer to as the fraction of energy allocated to
repair, or to future survival. Namely, we assume that the fourth component of mortality, q�t�,
varies with age in accordance with the following di�erential equation:

dq
dt
� d

w�t� q�0� � 0 �3�

where d is a non-negative constant.
We assume that all the needs of the organism, other than reproduction, current survival and

repair, are almost constant and need not be included explicitly in the model. In particular, we
neglect any allocation of energy to growth, which is equivalent to taking into consideration only
the adult period of life history. That is, we assume:

u�t� � v�t� � w�t� � 1 �4�
Thus the optimization problem we are to solve is the problem of searching, taking into account
state equations (2) and (3) and constraint (4), for the functions u�t�, v�t� and w�t� that maximize the
®tness criterion (1).
Below, we consider some particular cases of this optimization problem.

Trade-o� between reproduction and current survival

Let us ®rst disregard the fourth component q�t� of total mortality l�t�, setting q�t� � 0 and
w�t� � 0, and take into account only state equation (2) but not (3). Although our main objective is
repair and the fourth component of mortality is responsible for it, let us study the behaviour of the
model without this component, at least to form some point of reference.
The optimal solution can easily be found by the maximum principle method, writing the

Hamiltonian for (1) and (2):

H�l; u; t� � u�t�l�t� ÿ x�t�l�t�l�t�
or
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H�l; u; t� � l�t� u�t� ÿ x�t� a� bt � c
1ÿ u�t�

� �� �
where the co-state variable x�t� is de®ned by the di�erential equation:

dx
dt
� ÿ @H

@l
� ÿu�t� � x�t� a� bt � c

1ÿ u�t�
� �

x�T � � 0 �5�

and seeking the maximum of H in respect of u for each value of t.
To ®nd this maximum, we calculate the partial derivative of H in respect of u and equate it to zero:

@H
@u
� l�t� 1ÿ x�t� c

1ÿ u�t�� �2
( )

� 0

which gives:

u�t� � 1ÿ
����������
cx�t�

p
�6�

Inserting (6) into (5), we obtain the following di�erential equation for x�t�:
dx
dt
� 2

����������
cx�t�

p
� �a� bt�x�t� ÿ 1 x�T � � 0 �7�

Solving numerically (7) for x�t� and inserting the solution into (6), we ®nd the optimal strategy u�t�
of energy partition between reproduction and current survival.
Below, we present examples of optimal strategies calculated for di�erent values of the param-

eters a, b and c. We do not consider the case when c is zero, because any energy allocated to
survival would have no e�ect and hence the optimal strategy should be to allocate, at any age, all
energy to reproduction.
In Fig. 1, two cases when only the parameter c is not equal to zero ± namely, c � 0:015 (upper

curve) and c � 0:030 (lower curve) ± are shown for T � 100. We see that for c � 0:030, the optimal
value of u for all t distant enough from T is about 0.5. This is also the case for c � 0:015, but for t
even still more distant from T .
Thus we may conclude that for ®nite T , the smaller is c the smaller should be the energy allocated

to survival. This is not surprising, because for smaller c the e�ect of allocation of energy to survival
is smaller than its e�ect on reproduction (which becomes 0 for c � 0). As regards dependence on
age, we see that the fraction of energy allocated to survival decreases monotonically as t ap-

Figure 1. Dependence of u on t for c � 0:015 (upper curve) and c � 0:030 (lower curve) when a � b � d � 0

and T � 100.
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proaches T . This is also intuitively acceptable, because to die at age t means not to be alive (and
hence not to be able to reproduce) within the period from t to T , but certainly this loss is smaller
when t is closer to the age of inevitable death T . At t � T , we must have u�T � � 1 for any c, as can
be seen directly from (6) and (7).
For in®nite T , the situation is quite di�erent: independently of c the fraction of energy devoted to

current survival at any age t is equal to 0.5. To make this intuitively more acceptable, let us try to
minimize (1) directly for T � 1 assuming that u�t� is equal, for all t, to some constant, U . We have
in this case:

R0�U� �
Z1
0

Ueÿ
c

1ÿU tdt

Integrating gives:

R0�U� � U�1ÿ U�
c

Calculating the derivative of R0�U� with respect to U and equating it to 0 we obtain:

1ÿ 2U
c

� 0

from which we ®nd the optimal value U � 1=2, which indeed does not depend on c. (What,
however, depends on c is optimal expected lifetime reproductive success of the individual, which is
equal in this case to R0�1=2� � 1=4c.)
Summarizing, when neither external mortality nor controllable or uncontrollable ageing are

present, there is a striking distinction between the case of an unconstrained maximum lifespan
(usually, iteroparous species) when the strategy of energy allocation does not depend on age, and
the case of a ®xed-in-advance maximum lifespan (usually, semelparous species) when it does. In
fact, the limitation of the maximum lifespan may be considered simply as a kind of external
uncontrollable mortality. The e�ect of this source of mortality consists in decreasing the fraction of
energy spent on survival and hence increasing current controllable mortality p�t� when t ap-
proaches T , which ends by allocating all energy to reproduction at t � T (making mortality in®nite
at this point). This is illustrated in Fig. 2, which shows, for the same two cases in Fig. 1, the
dependence of p (here a single component of the total mortality l) on age t.

Figure 2. Dependence of current controlled mortality p on t for c � 0:015 (upper curve) and c � 0:030 (lower
curve) when a � b � d � 0 and T � 100.
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That the fraction of energy allocated to current survival decreases when t approaches T implies
that statistically we observe an increase in mortality with age from q�0� � c=v�0� at t � 0 up to
in®nity at t � T . This illustrates once again that a standard de®nition of ageing as an increase in
mortality with age is not adequate. Indeed, in the above situation, when only c di�ers from 0, there
is no accumulation of mortality (which we intuitively associate with ageing), since, in principle, the
individual could at any age reduce mortality down to its minimum possible value of c simply by
allocating all available energy to current survival.
Let us now look at the in¯uence of the level of external mortality, associated with the parameter

a, on the optimal energy partition between reproduction and current survival. In Fig. 3, two
optimal strategies of energy allocation for a � 0:075 (upper curve) and a � 0:015 (lower curve),
both for c � 0:03, are shown. We can see that, as with a � 0, the optimal value of u�t� tends to
some constant U , con®ned between 0.5 and 1, when t is su�ciently distant from T . But this
constant is now no longer 0.5 and is determined by the values of a and c, the e�ects of which on U
are in the opposite direction: U is larger for larger values of a and for smaller values of c. The ®rst
e�ect is widely known (Stearns, 1992): more severe external conditions alter an individual's pri-
orities in favour of reproduction. The inverse e�ect of increasing c was explained above: for larger
values of c, the bene®ts of allocating additional energy to current survival also increase. What we
wish to emphasize, particularly in this connection, is that the opposite e�ect of increasing a and c is
due to the distinction between the uncontrollability and controllability of these two sources of
mortality.
It is interesting to note that the e�ect of the dependence of U (i.e. the fraction of energy allocated

to reproduction in the case of in®nite T ) on c, which was absent in the case of a � 0, is present now
when a > 0. In fact, U depends only on the ratio of c to a, k � c=a. To demonstrate this, let us
again directly maximize (1) assuming that u�t� � U and T � 1.
We have:

R0�U� �
Z1
0

Ueÿ a� c
1ÿU

ÿ �
tdt

which, after integrating, gives:

Figure 3. Dependence of u on t for a � 0:075 (upper curve) and a � 0:015 (lower curve) when c � 0:030,
b � d � 0, and T � 100.

296 Teriokhin



R0�U� � U�1ÿ U�
a�1ÿ U� � c

Calculating the derivative of R0�U� with respect to U and equating it to 0, we obtain a quadratic
equation:

aU2 ÿ 2U�a� c� � �a� c� � 0

from which we ®nd the optimal solution:

U � �1� c=a� 1ÿ
����������������

c=a
1� c=a

s !
The dependence of U on k � c=a is illustrated in Fig. 4 for k � 0±10. We see that U decreases

monotonically with k. But k is directly proportional to c and inversely proportional to a. Hence U ,
the fraction of energy allocated to reproduction, is a decreasing function of c for ®xed a and an
increasing function of a for ®xed c.
Until now we have assumed parameter b to be zero. In Fig. 5, we present two curves obtained

with b � 0:01 (upper curve) and b � 0:001 (lower curve) for c � 0:03 and a � 0. The e�ect of the
rate of uncontrollable growth of mortality associated with b may be interpreted as follows: it is
similar to the e�ect of constant external mortality associated with a, but increases with age.
Namely, it is expressed as an age-related steady increase in the fraction of energy allocated to
reproduction, u�t�, and hence as a decrease in the fraction of energy allocated to current survival,
and the greater is b the faster is this increase in u�t�. Note, however, that this e�ect is quite di�erent
from the similar increase in u�t� with age we observed in Fig. 1. There it was caused by the
®niteness of T , whereas here the cause is an age-related linear growth in mortality, bt. Of course,
the increase in u�t� due to the ®niteness of T is also observed in Fig. 5, but we consider this simply
to be an end e�ect, which manifests itself only when t is very close to T , which, in turn, is so large
that the behaviour of the strategy near T has no real importance.
The direct consequence of reducing the fraction of energy allocated to current survival with age

is an increase in the corresponding component of mortality p�t� � c=v�t�, which is added to un-
controllable linear growth bt. Again, as in Fig. 1, this additional increase in mortality may be
interpreted as ageing by an external observer, although it is, in principle, completely reversible at

Figure 4. Dependence of U , the fraction of energy allocated to reproduction in the case of in®nite T , on
k � c=a when b � d � 0.
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any age. The dependence of p�t� on t for the two strategies of energy allocation presented in Fig. 5
is shown in Fig. 6. We see that the growth of p�t� slows with age during the initial part of the life
history, then becomes nearly stable so that p�t� grows almost linearly. The resulting behaviour of
the total mortality l�t� � bt � p�t� will be the same: growth, slow at the beginning, then becomes
linear (though having a rate exceeding b). In the next section, this result will be compared with the
behaviour of the mortality curve when mortality is accumulated.

Trade-o� between reproduction and repair

Now we disregard the components of the model relating to p�t� by setting p�t� � 0 and v�t� � 0.
This does not necessarily mean that no energy is spent on survival but rather that this proportion
of energy is roughly constant and therefore can be omitted from the optimization procedure.
Thus, we focus on the partition of energy between reproduction and the prevention of an

irreversible age-dependent increase in mortality. To solve the problem, the optimality criterion (1)
should be maximized with respect to u�t�, taking into account both state equations (2) and (3). One
way to do this is to apply the maximum principle.

Figure 5. Dependence of u on t for b � 0:01 (upper curve) and b � 0:001 (lower curve) when c � 0:030,
a � d � 0, and T � 1000.

Figure 6. Dependence of current controlled mortality p on t for b � 0:01 (upper curve) and b � 0:001 (lower
curve) when c � 0:030, a � d � 0, and T � 1000.
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The Hamiltonian in this case has the form:

H�l; q; u; t� � u�t�l�t� ÿ x�t�l�t�l�t� � y�t� d
1ÿ u�t�

or

H�l; q; u; t� � l�t� u�t� ÿ x�t� a� bt � q�t�� �f g � y�t� d
1ÿ u�t�

where the co-state variables x�t� and y�t� are de®ned by the di�erential equations:

dx
dt
� ÿ @H

@l
� ÿu�t� � x�t��a� bt � q�t�� x�T � � 0 �8�

and

dy
dt
� ÿ @H

@q
� l�t�x�t� y�T � � 0 �9�

The maximum principle also gives the condition that permits us to express u�t� as a function of l�t�,
y�t� and t:

u�t� � 1ÿ
��������������
ÿy�t�d

l�t�

s
�10�

Replacing u�t� in (2), (3), (8) and (9) by (10), we obtain a system of four di�erential equations for
two state and two co-state variables, l�t�, q�t�, x�t� and y�t�. Finding the solution to this system and
replacing l�t� and y�t� in (10) by their solutions, we will obtain the optimal strategy of energy
partition u�t�.
The above system of di�erential equations can be solved only using numerical methods; that is,

by discretizing the problem at this stage. Another approach is to discretize the problem at the
beginning and apply dynamic programming. In some respects, this approach is preferable for
problems like those considered here. Both the building of models and the ®nding of solutions are
more explicit and intuitively comprehensible. In addition, survival, l�t�, is not included in dynamic
programming as a state variable, which reduces the dimensionality of the problem.
In the present case, the method of dynamic programming proceeds as follows. Lifetime from 0 to

maximum life span T and the range in variation of the component of mortality q from 0 to some
maximum Q are divided into small steps Dt and Dq, and a gain function F �t; q� is de®ned as the
maximum expected reproductive success which can be attained in the interval from t to T if the
cumulative component of mortality is equal to q at t. The function F �t; q� can be calculated by
iterating backwards from T to 0 starting from some known values of this function, F �T ; q� at t � T .
In particular, in our case it is natural to set F �T ; q� � 0 for all q, assuming that no o�spring are
produced at t � T . In parallel with F �t; q�, the optimal fraction of energy u�t; q� is also calculated.
To calculate F �t; q� and u�t; q� for any t, given the values of F �t � Dt; q� for all q, the following

equation, the basic equation of dynamic programming (Mangel and Clark, 1988), is used:

F �t; q� � max
u

F t � Dt; q� d
1ÿ u

Dt
� �

� u
� �

exp��ÿaÿ bt ÿ q�Dt�
� �

The optimal value u�t; q� is that value of u that furnishes the maximum value for the right-hand
side of this equation. Below, several examples of optimal strategies for di�erent values of the
parameters a, b and d are given.
In Fig. 7, only the parameter d is non-zero; that is, no uncontrollable mortality is present and the

rate of age-related mortality accumulation depends on the fraction of energy allocated to repair,
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w � 1ÿ u. As a result, for all t not very close to T , the optimal energy partition does not depend on
t but clearly depends on q, the level of mortality attained at this age. The form of dependence of u
on q for d � 0:000125 is shown in more detail in Fig. 8 for t � T=2. Because the optimal fraction of
energy allocated to repair decreases with increasing mortality, it is intuitively acceptable: it does
not make sense to spend energy on future survival when there is a high probability of death in the
near future. This e�ect is similar to that of external uncontrollable mortality (associated with the
parameter a in the expression for l�t� and illustrated by Fig. 2): accumulated mortality would

Figure 7. Dependence of u on t and q (shown by density of hatching) and dependence of q on t (bold curve)
for d � 0:000125, a � b � c � 0, and T � 400.

Figure 8. Dependence of u on accumulated mortality q at t � T=2 for d � 0:000125, a � b � c � 0, and
T � 400.
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become uncontrollable and in¯uence the optimal energy partition in the corresponding way. This
conclusion contrasts with the e�ect of augmentation of the level of current controllable mortality
associated with the parameter c. This was illustrated in Fig. 1, where the optimal fraction of energy
allocated to current survival increases for higher c. We see that when q, the accumulated mortality,
increases from 0 to in®nity, the optimal value of u increases up to a value of 1 and, correspond-
ingly, the fraction of energy allocated to repair, w, decreases to 0.
Although the strategy of optimal energy partition does not depend explicitly on age t (for t

su�ciently distant from T ), decisions on energy allocation do depend on age because of increasing
q with t for any individual life history. This is shown in Fig. 7, where the bold curve shows the
dynamics of accumulating mortality by an individual with age: the accumulated mortality, q, grows
and correspondingly the fraction w of energy allocated to repair decreases. In turn, decreasing w
with age increases the rate of accumulating mortality, d=w. This leads to the form of dependence of
q on t that we see in Fig. 7: mortality is accumulated at an increasing rate with age, although this
accumulation would be linear if the fraction of energy allocated to repair was constant. Note that
in the case of uncontrollably increased mortality presented in Fig. 6, we did not observe such an
acceleration, although the fraction of energy allocated to survival did decrease.
The observed acceleration correlates well, at least qualitatively, with the widely observed real

dependence of mortality on age. The most well known of such approximations is the Gompertz-
Makeham equation (Gompertz, 1825; Makeham, 1860):

l�t� � aebt � c

(a, b and c are non-negative constants), which clearly demonstrates an accelerated growth in
mortality with age. Our results argue for an explanation of this e�ect in terms of some kind of
autocatalytic process. Indeed, because d (i.e. the minimum rate of accumulated mortality attainable
when all energy is allocated to repair) is greater than 0, some increase in mortality occurs for any t
(including t � 0). But this increase in mortality causes a reduction in the fraction of energy allocated
to repair, w, which, in turn, augments the rate of increase in mortality, d=w, which, as a conse-
quence, results in a still greater reduction in the amount of energy allocated to repair, and so on.
The e�ect of augmentation of the parameter d on optimal energy partition can be seen in Fig. 9,

which demonstrates that, for d � 0:00019, as compared with d � 0:000125 in Fig. 7, the optimal
value of u for the same q is lower ± that is, the optimal value of w is higher. That means that for
bigger d it is optimal to spend more energy on repair at the same level of accumulated mortality.
This correlates with a similar conclusion above in relation to augmentation of the parameter c and
makes common sense: for bigger d the investment in repair becomes relatively more pro®table (or
rather less unpro®table!).
As regards individual life history, we see from comparing Fig. 9 with Fig. 7 that, despite the fact

that more energy is spent on repair for d � 0:00019, higher values of q are attained for younger
ages compared with d � 0:000125. That means, in particular, that the expected lifespan is less for
d � 0:00019.
The next example, presented in Fig. 10, illustrates the in¯uence of an additional uncontrollable

source of mortality given by a � 0:1. We see, by comparing Fig. 10 with Fig. 7, that an additional
mortality of this kind accelerates u towards 1 with increasing q. Roughly speaking, Fig. 10 may be
likened to Fig. 7 shifted down by 0.1. That is, an additional external mortality decreases the
amount of energy invested in repair.
The situation presented in Fig. 11 di�ers from that in Fig. 10 due to the dependence of un-

controllable mortality on age that is the result of an explicit dependence of the optimal decision on
age t. Namely, for the same level of q, older organisms should devote a larger proportion of energy
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Figure 9. Dependence of u on t and q (shown by density of hatching) and dependence of q on t (bold curve)

for d � 0:00019, a � b � c � 0, and T � 400.

Figure 10. Dependence of u on t and q (shown by density of hatching) and dependence of q on t (bold curve)
for a � 0:1, d � 0:000125, b � c � 0, and T � 400.
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to reproduction compared with younger ones. However, this distinction is not fundamental, at
least for t distant enough from T , and simply re¯ects the increase in overall mortality with age.
Indeed, if we replace the state variable q by the sum q� bt, we obtain (Fig. 12) a picture similar to
that in Fig. 7, where there is no dependence of the optimal energy partition strategy on t for t not
very close to T .
Nevertheless, the di�erence between Figs 11 and 12 may be important from the point of view of

modelling the structure of the neuroendocrine network that controls optimal energy partition
control (Budilova et al., 1995) because the organism should have two sensors in the ®rst case, one
for age t and the other for accumulated mortality q, and only one sensor, for q� bt, in the second.

Trade-o� between current survival and repair

Let us now calculate some optimal energy partitions between current survival and repair assuming
that the reproduction rate is constant at 1 (which amounts to maximizing the mean expected
lifespan of the individual). The following basic dynamic programming equation may be used for
this purpose:

F �t; q� � max
v

F t � Dt; q� d
1ÿ v

Dt
� �

� 1

� �
exp ÿ c

v
ÿ q

� �
Dt

h i� �
where v is the fraction of energy allocated to survival. For c � 0:05 and d � 0:0025, the optimal
solution is presented in Fig. 13. We see that the optimal energy partition is shifted in favour of
survival at the expense of repair as accumulated mortality q grows. Because, as seen in Fig. 13,

Figure 11. Dependence of u on t and q (shown by density of hatching) and dependence of q on t (bold curve)
for b � 0:005, d � 0:000125, a � c � 0, and T � 400.
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accumulated mortality increases during an individual's life history, we will observe a constant shift
in energy in favour of current survival as the individual ages.
The e�ect of decreasing the parameter c, associated with current survival, from 0.05 to 0.001,

may be seen in Fig. 14. The result is rather natural: for the same accumulated mortality, energy
investment is shifted in Fig. 14, compared with Fig. 13, in favour of repair at the expense of
current survival. But the same general tendency persists: more and more energy should be devoted
to current survival as mortality accumulates.
Note, also, that in the same way as with the trade-o� between reproduction and repair, we again

observe the phenomenon of accelerated (faster than simple linear) growth in mortality during an
individual's life history caused by a decrease in energy investment to repair with age. Thus, we may
expect manifestations of this phenomenon even when reproductive e�ort does not increase with
age.

Discussion

The main objectives of this study were to determine evolutionarily optimal strategies for allocating
energy to current and future survival and to determine the resulting individual patterns of in-
creasing mortality with age. Three cases of energy partitioning were considered: that between
reproduction and current survival (maintenance), that between reproduction and repair (future
survival), and that between current and future survival.
The most interesting thing that we noted when considering the case of the trade-o� between

reproduction and current survival was the opposite in¯uences of the levels of increase of uncon-
trollable and controllable sources of mortality on the strategy of energy partitioning. While in-

Figure 12. The same as in Fig. 11, but with the axis q replaced by q� bt.
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Figure 13. Dependence of v on t and q (shown by density of hatching) and dependence of q on t (bold curve)
for c � 0:05, d � 0:0025, a � b � 0, and T � 400.

Figure 14. Dependence of v on t and q (shown by density of hatching) and dependence of q on t (bold curve)
for c � 0:001, d � 0:0025, a � b � 0, and T � 400.
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creasing uncontrollable external mortality shifts the investment in energy in favour of reproduction
at the expense of individual survival, intensifying the source of currently controllable mortality
forces the organism to devote more energy to its own survival (simply because the relative e�ec-
tiveness of investing in survival increases).
We also noted the crucial role of the ®niteness of maximum lifespan when age-independent

sources of mortality only were present. The constraint imposed on the maximum lifespan in¯u-
ences the strategy, making it age-dependent. The e�ect of this constraint on the optimal decision is
the more pronounced the closer the organism is to the age of maximum lifespan (when all energy
should be allocated to reproduction). But limiting the maximum lifespan becomes less important if
there is an increase in mortality with age, whether uncontrollable or controllable, or both (though
the end e�ect of the need to allocate more and more energy to reproduction persists).
The control of increased mortality (i.e. controllable repair) consists of the emergence of accel-

erated growth of mortality with age. The age-dependent increase in mortality reduces the pro-
portion of energy devoted to repair, which, in turn, augments the rate of increase in mortality,
which further reduces the amount of energy allocated to repair, and so on. That is, the accumu-
lation of mortality is inherently autocatalytic. In a sense, this may be considered one possible
explanation of the accelerated ageing often observed in nature and expressed sometimes in the
form of a Gompertz-Makeham equation.
It was also shown that when mortality is increased, repair is sacri®ced not only in favour of

reproduction but in favour of current survival too, so that accelerated ageing should be expected
even when the investment in reproduction does not increase with age. In general, we may conclude
that when mortality increases, the priority when expending energy is shifted primarily in favour of
reproduction, then in favour of current survival, with repair having lowest priority.
Some problems remain. In particular, to simplify the calculations and interpretation of the

results, we did not take into account energy invested in growth. Based on natural physiological
assumptions and a non-seasonal environment, it is optimal to switch abruptly from growth to
reproduction (Ziolko and Kozlowski, 1983). But what would be the e�ect of this switch on the
allocation of energy to repair? In a seasonal environment, it is often optimal to switch from growth
to reproduction at some moment during the reproductive part of the year and to resume repro-
duction at the beginning of the reproductive period the following year (Kozlowski and Uchmanski,
1987). Should we also expect some kind of repeated rejuvenation (increased investment in repair) in
this case? It is important to use insight into the problems of energy partition, gained here using an
evolutionary optimization approach, to clarify the principal physiological mechanisms of realizing
optimal strategies (Budilova et al., 1995).
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